A taste of NOM (I)
Parser combinator inception
Intro
Recently, I've been working on a small project which entails parsing a string into some kind of data structure. Regex
of course is the first coming up solution to me spontaneously, but as the time passed, I contemplated what if I could use a parser combinator to do the same thing. This is not a verbiage but a beneficial motive for the project's future expansion. Fortunately, few months ago I was intrigued by a parser combinator framework called nom, and at that moment I fortuitously read the article provided by Bodil Stokke. It grants me a immense pleasure to understand the concept of parser combinator. Some people may ask what can we do by this framework, and here I've listed some of the reasons 'Why use nom' from the official documentation:
- Binary format parsers
- Text format parsers
- Programming language parsers
- Streaming formats
Although, comparing to the list above, the use case of mine is a little bit lightweight, it inspired me a future scenario that is to deal with streaming parsing, such as huge files or network formats (the last use case on the list).
Impl
Back to our topic, let's explore what 'nom' can do for us. This time, I used List of parsers and combinators as a reference to surf the possibilities of composing. To include the nom crate into your project, add the following line to your Cargo.toml:
[dependencies]
nom = "7"
To make things clear, let's start with an assumption: In a runtime environment, there is no preliminary connection information for the server side to know which database and table should be connected and read, hence we need a hot-reload mechanism to make sure that each time the request from the client side can be distinguished and then connect to a specific database and read an existed table afterward.
Suppose we have some strings like [MYSQL:BOOLEAN]
and [POSTGRES:CHAR]
, and we want to parse them into a DbType
enum and a ValueType
enum respectively. First, we need to define these two enum:
#[derive(Debug, PartialEq, Eq)]
pub(crate) enum DbType {
Mysql,
Postgres,
Sqlite,
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub(crate) enum ValueType {
Bool,
U8,
U16,
U32,
U64,
I8,
I16,
I32,
I64,
F32,
F64,
String,
}
And then, we want a FromStr
trait for each of these enum, which will be used to parse the string into the corresponding enum. Additionally, an error enum is required for the FromStr
trait:
#[derive(Debug)]
pub(crate) enum ParsingError {
InvalidDbType(String),
InvalidDataType(String, String),
ParsingError(String),
}
impl FromStr for DbType {
type Err = ParsingError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"MYSQL" => Ok(DbType::Mysql),
"POSTGRES" => Ok(DbType::Postgres),
"SQLITE" => Ok(DbType::Sqlite),
_ => Err(ParsingError::InvalidDbType(s.to_string())),
}
}
}
Wait, FromStr
means a one-to-one binding, but we need many-to-many binding for the ValueType
, for instance, in Mysql 'TINYINT(1)' and 'BOOLEAN' represent 'bool' in Rust, while in Postgres 'BOOL' also represents 'bool' in Rust, and moreover, 'TINYINT UNSIGNED' in Mysql represents 'u8' in Rust, while there is no such thing in Postgres, hence there is no way to impl a FromStr
trait for ValueType
enum that can manifest each variant.
One way to solve this problem is to define three static HashMap
to store &'static str
to ValueType
mapping relationship:
lazy_static::lazy_static! {
pub(crate) static ref MYSQL_TMAP: HashMap<&'static str, ValueType> = {
HashMap::from([
("TINYINT(1)", ValueType::Bool),
("BOOLEAN", ValueType::Bool),
("TINYINT UNSIGNED", ValueType::U8),
("SMALLINT UNSIGNED", ValueType::U16),
("INT UNSIGNED", ValueType::U32),
("BIGINT UNSIGNED", ValueType::U64),
("TINYINT", ValueType::I8),
("SMALLINT", ValueType::I16),
("INT", ValueType::I32),
("BIGINT", ValueType::I64),
("FLOAT", ValueType::F32),
("DOUBLE", ValueType::F64),
("VARCHAR", ValueType::String),
("CHAR", ValueType::String),
("TEXT", ValueType::String),
])
};
pub(crate) static ref POSTGRES_TMAP: HashMap<&'static str, ValueType> = {
HashMap::from([
("BOOL", ValueType::Bool),
("CHAR", ValueType::I8),
("TINYINT", ValueType::I8),
("SMALLINT", ValueType::I16),
("SMALLSERIAL", ValueType::I16),
("INT2", ValueType::I16),
("INT", ValueType::I32),
("SERIAL", ValueType::I32),
("INT4", ValueType::I32),
("BIGINT", ValueType::I64),
("BIGSERIAL", ValueType::I64),
("INT8", ValueType::I64),
("REAL", ValueType::F32),
("FLOAT4", ValueType::F32),
("DOUBLE PRECISION", ValueType::F64),
("FLOAT8", ValueType::F64),
("VARCHAR", ValueType::String),
("CHAR(N)", ValueType::String),
("TEXT", ValueType::String),
("NAME", ValueType::String),
])
};
pub(crate) static ref SQLITE_TMAP: HashMap<&'static str, ValueType> = {
HashMap::from([
("BOOLEAN", ValueType::Bool),
("INTEGER", ValueType::I32),
("BIGINT", ValueType::I64),
("INT8", ValueType::I64),
("REAL", ValueType::F64),
("VARCHAR", ValueType::String),
("CHAR(N)", ValueType::String),
("TEXT", ValueType::String),
])
};
}
Don't forget to include lazy_static
crate to your Cargo.toml:
[dependencies]
lazy_static = "1"
And unit test is needed to test these three HashMap
:
#[test]
fn test_get_tmap() {
assert_eq!(MYSQL_TMAP.get("BIGINT UNSIGNED").unwrap(), &ValueType::U64);
assert_eq!(POSTGRES_TMAP.get("REAL").unwrap(), &ValueType::F32);
assert_eq!(SQLITE_TMAP.get("CHAR(N)").unwrap(), &ValueType::String);
}
Then we come to the most encouraging part, using 'nom' to parse strings like [MYSQL:BOOLEAN]
and [POSTGRES:CHAR]
. We want to extract two parts from these strings: database type and value type, and furthermore, characters [
, :
and ]
are the identifiers to delimitate these two types. According to the reference, alpha1
can be used to find out at least one alphabet character, and tag
can be used to recognizes a specific suite of characters or bytes.
Another thing that cannot be neglected is that database type and value type are separated by a colon, using alpha1
and tag
can barely help to extract them at once. Therefore, introducing a sequence combinator turns to be necessary. separated_pair
as the name suggests, will extract a pair of values from a sequence:
Gets an object from the first parser, then matches an object from the sep_parser and discards it, then gets another object from the second parser.
use nom::sequence::separated_pair; use nom::bytes::complete::tag; let mut parser = separated_pair(tag("abc"), tag("|"), tag("efg")); assert_eq!(parser("abc|efg"), Ok(("", ("abc", "efg")))); assert_eq!(parser("abc|efghij"), Ok(("hij", ("abc", "efg")))); assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
Finally, we need delimited
to matches the whole string:
Matches an object from the first parser and discards it, then gets an object from the second parser, and finally matches an object from the third parser and discards it.
use nom::sequence::delimited; use nom::bytes::complete::tag; let mut parser = delimited(tag("("), tag("abc"), tag(")")); assert_eq!(parser("(abc)"), Ok(("", "abc"))); assert_eq!(parser("(abc)def"), Ok(("def", "abc"))); assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
Omitting the attempting process, we can write a function as this:
fn get_types(input: &str) -> IResult<&str, (&str, &str)> {
let sql_type = |s| alpha1(s);
let data_type = |s| alpha1(s);
let ctn = separated_pair(sql_type, tag(":"), data_type);
let mut par = delimited(tag("["), ctn, tag("]"));
par(input)
}
Then try the unit test:
#[test]
fn test_get_types() {
assert_eq!(
get_types("[MYSQL:BOOLEAN]").unwrap(),
("", ("MYSQL", "BOOLEAN"))
);
assert_eq!(
get_types("[POSTGRES:DOUBLE PRECISION]").unwrap(),
("", ("POSTGRES", "DOUBLE PRECISION"))
);
}
Sadly, it throws an error at the second assertion, because there has a space between DOUBLE
and PRECISION
. Let's fix this by using space0
and alpha0
. By doing this we can have a sequential parser like alpha1, space0, alpha0
, and combine them into a single parser. We can use a separated_pair
again, and this time, we don't really need to separated them but just recognize
this pattern. Moreover, after dive deeply into the nom documentation, I found out nom has provided a kind of combinators called 'choice combinators' as well. alt
is one of them which can be used to combine two parsers. Take care the order of this combination, if data_type_1
and data_type_2
are reversed, the result would not be the same. I'll leave this small issue to you to figure out.
So here comes out the version 2 and 3:
fn get_types2(input: &str) -> IResult<&str, (&str, &str)> {
let sql_type = |s| alpha1(s);
let data_type = |s| recognize(separated_pair(alpha1, space0, alpha0))(s);
let ctn = separated_pair(sql_type, tag(":"), data_type);
let mut par = delimited(tag("["), ctn, tag("]"));
par(input)
}
fn get_types3(input: &str) -> IResult<&str, (&str, &str)> {
let sql_type = |s| alpha1(s);
let data_type_1 = |s| recognize(separated_pair(alpha1, space1, alpha1))(s);
let data_type_2 = |s| alpha1(s);
let data_type = |s| alt((data_type_1, data_type_2))(s);
let ctn = separated_pair(sql_type, tag(":"), data_type);
let mut par = delimited(tag("["), ctn, tag("]"));
par(input)
}
This time I add another assertion to the unit test:
#[test]
fn test_get_types2() {
assert_eq!(
get_types2("[MYSQL:BOOLEAN]").unwrap(),
("", ("MYSQL", "BOOLEAN"))
);
assert_eq!(
get_types2("[POSTGRES:DOUBLE PRECISION]").unwrap(),
("", ("POSTGRES", "DOUBLE PRECISION"))
);
assert_eq!(
get_types2("[SQLITE:CHAR(N)]").unwrap(),
("", ("SQLITE", "CHAR(N)"))
);
assert_eq!(
get_types3("[MYSQL:BOOLEAN]").unwrap(),
("", ("MYSQL", "BOOLEAN"))
);
assert_eq!(
get_types3("[POSTGRES:DOUBLE PRECISION]").unwrap(),
("", ("POSTGRES", "DOUBLE PRECISION"))
);
assert_eq!(
get_types3("[SQLITE:CHAR(N)]").unwrap(),
("", ("SQLITE", "CHAR(N)"))
);
}
No... It failed again. Because the third and sixth assertions have a (N)
in it.
So what about completely ignore the chars between :
and ]
? take_until
fn get_types4(input: &str) -> IResult<&str, (&str, &str)> {
let sql_type = |s| alpha1(s);
let data_type = |s| take_until("]")(s);
let ctn = separated_pair(sql_type, tag(":"), data_type);
let mut par = delimited(tag("["), ctn, tag("]"));
par(input)
}
And the unit test:
#[test]
fn test_get_types4() {
assert_eq!(
get_types4("[MYSQL:BOOLEAN]").unwrap(),
("", ("MYSQL", "BOOLEAN"))
);
assert_eq!(
get_types4("[POSTGRES:DOUBLE PRECISION]").unwrap(),
("", ("POSTGRES", "DOUBLE PRECISION"))
);
assert_eq!(
get_types4("[SQLITE:CHAR(N)]").unwrap(),
("", ("SQLITE", "CHAR(N)"))
);
}
Eventually it works..., but it's still not the best way to do it. Ok, let's take a deep breath and see how we can improve it. Perused sequence combinators, I found tuple
and pair
can be used to deconstruct the CHAR(N)
string. That is to say, firstly, we can use pair
to deconstruct the CHAR(N)
string into CHAR
and (N)
, and then use tuple
to deconstruct the (N)
into (
, N
and )
. One more thing is that I have noticed dataType
like FLOAT8
is also legal, so we need to replace alpha1
by alphanumeric1
. Consequently, we will have get_types5
function like this:
fn get_types5(input: &str) -> IResult<&str, (&str, &str)> {
let sql_type = |s| alpha1(s);
let data_type_1 = |s| recognize(separated_pair(alpha1, space1, alpha1))(s);
let tpl = |s| tuple((tag("("), alphanumeric1, tag(")")))(s);
let pr = |s| pair(alpha1, tpl)(s);
let data_type_2 = |s| recognize(pr)(s);
let data_type_3 = |s| alphanumeric1(s);
let data_type = |s| alt((data_type_1, data_type_2, data_type_3))(s);
let ctn = separated_pair(sql_type, tag(":"), data_type);
let mut par = delimited(tag("["), ctn, tag("]"));
par(input)
}
Again, unit test:
#[test]
fn test_get_types5() {
assert_eq!(
get_types5("[MYSQL:BOOLEAN]").unwrap(),
("", ("MYSQL", "BOOLEAN"))
);
assert_eq!(
get_types5("[POSTGRES:DOUBLE PRECISION]").unwrap(),
("", ("POSTGRES", "DOUBLE PRECISION"))
);
assert_eq!(
get_types5("[POSTGRES:FLOAT8]").unwrap(),
("", ("POSTGRES", "FLOAT8"))
);
assert_eq!(
get_types5("[SQLITE:CHAR(N)]").unwrap(),
("", ("SQLITE", "CHAR(N)"))
);
assert_eq!(
get_types5("[MYSQL:TINYINT(1)]").unwrap(),
("", ("MYSQL", "TINYINT(1)"))
);
}
After few attempts on the parsing 'alchemy', we finally move on to the final part from_str_to_type
:
fn from_str_to_type(input: &str) -> Result<(DbType, ValueType), ParsingError> {
match get_types5(input) {
Ok((_, (db_type, data_type))) => match db_type.parse::<DbType>() {
Ok(dt) => {
let rvt = match dt {
DbType::Mysql => {
MYSQL_TMAP
.get(data_type)
.ok_or(ParsingError::InvalidDataType(
"MYSQL".to_string(),
data_type.to_string(),
))
}
DbType::Postgres => {
POSTGRES_TMAP
.get(data_type)
.ok_or(ParsingError::InvalidDataType(
"POSTGRES".to_string(),
data_type.to_string(),
))
}
DbType::Sqlite => {
SQLITE_TMAP
.get(data_type)
.ok_or(ParsingError::InvalidDataType(
"SQLITE".to_string(),
data_type.to_string(),
))
}
};
match rvt {
Ok(vt) => Ok((dt, vt.clone())),
Err(_) => Err(ParsingError::InvalidDataType(
db_type.to_string(),
data_type.to_string(),
)),
}
}
Err(_) => Err(ParsingError::InvalidDbType(db_type.to_string())),
},
_ => Err(ParsingError::ParsingError(input.to_string())),
}
}
The final unit test:
#[test]
fn test_cvt() {
assert_eq!(
from_str_to_type("[MYSQL:BOOLEAN]").unwrap(),
(DbType::Mysql, ValueType::Bool)
);
assert_eq!(
from_str_to_type("[POSTGRES:DOUBLE PRECISION]").unwrap(),
(DbType::Postgres, ValueType::F64)
);
assert_eq!(
from_str_to_type("[POSTGRES:FLOAT8]").unwrap(),
(DbType::Postgres, ValueType::F64)
);
assert_eq!(
from_str_to_type("[SQLITE:CHAR(N)]").unwrap(),
(DbType::Sqlite, ValueType::String)
);
assert_eq!(
from_str_to_type("[MYSQL:TINYINT(1)]").unwrap(),
(DbType::Mysql, ValueType::Bool)
);
}
Hula! We're done! We have been through a whole process of converting a string to a tuple of (DbType, ValueType)
, and at the moment, we've tried several different parsing methods (progressively updating). The full code is in my Github page, and you are more than welcome to leave a message for me. That's all for today, until next time!